Ignition and flame-growth modelling on realistic building and landscape objects in changing environments

نویسنده

  • Mark A. Dietenberger
چکیده

Effective mitigation of external fires on structures can be achieved flexibly, economically, and aesthetically by (1) preventing large-area ignition on structures by avoiding close proximity of burning vegetation; and (2) stopping flame travel from firebrands landing on combustible building objects. Using bench-scale and mid-scale fire tests to obtain flammability properties of common building constructions and landscaping plants, a model is being developed to use fast predictive methods suitable for changing environments imposed on a parcel lot consisting of structures and ornamental plants. Eventually, the property owners and associated professionals will be able to view various fire scenarios with the ability to select building materials and shapes as well as select ornamental plant species and their placement for achieving the desired fire mitigation. The mathematical formulation presented at the 2006 BCC Research Symposium is partially shown here and some results are compared with (1) specialised testing of Class B burning brands (ASTM E108) in the cone calorimeter (ASTM E1354); (2) our refurbished and modified Lateral Ignition and Flame Travel Test (ASTM E1321 and E1317); (3) room-corner tests with oriented-strand board (ISO 9705); and (4) cone calorimeter tests of fire-resistive materials such as fire retardant-treated plywood and single-layer stucco-coated oriented-strand board. Additional keywords: calorimetry, fire mitigation, flammability modelling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conditional Moment Closure Modelling for Spark Ignition in a Turbulent N-heptane Spray

Ignition and flame stabilisation have been simulated in a turbulent, bluff body stabilised spray flame. A complete first order Conditional Moment Closure (CMC) model for spray combustion is presented, as well as CMC modelling for spark ignition. The new elements of the two phase model formalism and the spark ignition models are illustrated using a one dimensional spray ignition example. It is s...

متن کامل

Turbulence-Augmented Minimization of Combustion Time in Mesoscale Internal Combustion Engines

Mesoscale internal combustion engines for a variety of new combustion system applications have dimensions that are far smaller than conventional macroscale engines, yet unlike true microscale engines allow significant mean flow and turbulence to be created in the combustion chamber by the injection process. The resulting flow allows minimization of the combustion time by augmenting flame propag...

متن کامل

A comprehensive Lagrangian flame-kernel model to predict ignition in SI engines

A correct prediction of the ignition process represents a fundamental pre-requisite for a successful CFD simulation of combustion SI engines. Ignition involves many scales, physical and chemical phenomena that need to be described in detail. Within this context, the authors developed a Lagrangian model that can be used to predict the first stages of the combustion process in SI engines, when th...

متن کامل

A Cellular Automata Approach to CFD Flame Spread Modelling

This paper focuses on the growth and spread stage of full-scale fires in enclosures, where a localised flame spreads across a single fuel item, increasing the heat release rate, thereby resulting in increased fire hazard. The development of a numerical model for fire spread over a solid fuel surface, and its integration into a CFD model, is described. The conflicting demands of resolving the sm...

متن کامل

The role of detailed chemical kinetics on CFD diesel spray ignition and combustion modelling

Spray ignition and flame stabilisation in the frame of diesel-like combustion conditions combine fundamental and complex physical and chemical processes. In this work, a numerical investigation has been performed to evaluate the potential of integrating detailed chemistry into CFD calculations, in order to improve predictions and gain more insight in involved processes. This work has been carri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010